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SUMMARY 

The flow of a fluid, containing a reactant, past a solid catalytic particle on which a reaction takes place is 
considered for large P6clet number. The concentration of the reactant is given by the diffusion boundary- 
layer equation, and this is solved in the case when the rate of reaction on the particle surface and the rate of 
diffusion of reactant onto the surface are of the same order of magnitude. 

For a spherical particle, a series solution for the concentration is found for the case of Stokes flow, and 
numerical solutions are found for Stokes flow and for flow at higher Reynolds numbers (up to Re = 10). To 
examine the effect of particle shape, numerical solutions are found for prolate and oblate spheroids in Stokes 
flow. 

1. Introduction 

An operation often used in chemical engineering is one in which a fluid containing several 

chemical species flows over a solid surface on which a reaction takes place. The solid itself may 

take part in the reaction or it may only act as a catalyst. 

In such situations the calculation of  the rate o f  surface reaction is the main interest. This 

rate is determined by both the kinetic laws which govern the chemical reaction and the hydro- 

dynamically induced transport  mechanisms near the surface. The coupling between the kinetics 

and the flow arises because before the substances can react they must first reach the surface - 

by convection with the fluid and by diffusion. The effect of  the flow becomes appreciable 

when the reaction rate constant is very large, since in this case the limiting factor is how fast the 

chemical substances are transported to the surface (the reaction is then said to be diffusion 

limited). 

In this paper we consider the steady flow of  an inert fluid containing a single reactant past a 

solid particle. We assume that a first order reaction (with rate constant k) takes place on its 

surface and that far from the particle the flow is a uniform stream Uo and the concentration of  

the reactant is a constant c t. The velocity of  the fluid (taken to be viscous and incompressible) 

is determined by the Navier-Stokes equations with appropriate boundary conditions, and the 

concentration c of  the reactant is given by the convective diffusion equation. On making the 

realistic assumption that the P6clet number Pe = Uoa/D is large (where D is the diffusion 
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coefficient and a is a typical length scale), the effects of diffusion are confined to a boundary- 
layer region next to the particle surface. On the particle the rate of reaction must equal the rate 
of diffusion onto the surface, which, for a first order reaction, leads to the boundary condition 

D n . V c  = kc, (1) 

(n is the outward unit normal). 

In previous work on this problem Sih and Newman [11 and Chambr6 and Acrivos [2] 
assumed the process to be diffusion limited, that is k ~ 0% and so boundary condition (1) 
becomes c = 0. In [1] the Reynolds number Re = Uoa/u (v is the kinematic viscosity of the 
fluid) was assumed small, the flow being given by Stokes flow, and the particle was spherical, in 
[2] Re was assumed to be very large, the flow now being described by the boundary-layer 
equations, and the geometry considered was that of a fiat plate. General reaction kinetics have 
been discussed by Polyanin and Sergeev [3] (for Re ,~ 1) and by Acrivos and Chambr6 [4] (for 

Re >> 1), again both in the diffusion limited case. 
Here we assume that the reaction and diffusion rates are of the same order, so that the full 

form of (1) is used. Firstly Stokes flow is considered, and then the effect of increasing Re up to 
Re = 10, just prior to the onset of separation (where the assumption of a concentration 
boundary-layer on the surface no longer holds). The basic geometry considered is that of a 
sphere, but the effect of particle shape on the reaction rate is also discussed - the shapes con- 
sidered being prolate and oblate spheroids. 

2. The basic equations 

Consider the case of a spherical particle of radius a, the modification for prolate and oblate 
spheroids will be discussed later. The situation is axisymmetric and so the convective diffusion 
equation can be written in the spherical coordinates r', 0 (0 = 0 being the direction of the free 

stream at infinity). Expressing the velocity components in terms of a stream function and then 
non-dimensionalising with respect to length a, velocity Uo and concentration cf gives 

( 0c) t 0c +10 0c)} 1 aft aC aft b__ 2 inO (2) 
sinO a-o ar ar ~ = P e - ' [ a r ~  ~ r  I sinOaO a-O ' 

where r = r'/a, and C = c/c t. The non-dimensional velocity components Ur, Uo, in the radial 
and azimuthal directions respectively, are given by 

U r = (r 2 sin 0)- '  a.__~_~ 
a0 '  

a¢ 
U o = -- (r sin 0) -l a---r" 

(3) 

The boundary conditions are, 
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(~a)----OCor C = O  on r = 1 (from (1)), (4) 

and 

C ~ 1 as r ~ oo. (5) 

There is also a symmetry condition 

~C 
- 0 o n  0 = O, ft. 

00 

Letting Pe ~ co in (2) leaves only the convective terms, indicating that C is a constant on 

streamlines and hence C = 1 everywhere. But in that case the boundary condition on r = 1 

cannot be satisfied. This suggests the presence of  a boundary-layer region close to the sphere 

where the concentration varies rapidly from its depleted value at the sphere surface to its outer 

value 1. This region can be investigated by stretching the r coordinate. Sih and Newman [ 1 ] 

have shown that for Pe >~ 1 the flow field can be divided into several regions characterised by 

different dominant methods of  mass transfer. In each region (2) is approximated by appropriate 

stretching of  coordinates and then retaining the largest terms as Pe ~ oo. Sih and Newman found 

six regions: an outer region, ( r - - 1 ) >  O(Pe-U3), 0 > O(Pe-U3); a diffusion boundary-layer, 

(r - 1) < O(Pe-l/a), 0 > O(Pe-U3); and four regions in the wake, 0 < O(Pe-I/3). 

In the outer region convection dominates as the method of  transfer, and in the boundary 

layer, convection and diffusion perpendicular to the sphere surface are dominant. It was shown 

in [3] that the concentration field near the rear stagnation point (i.e. in the region 0 < O(Pe -1/3) 

contributes very little to the total reaction on the sphere, and so the problem of  finding the rate 

of  total surface reaction reduces to that of  solving the equation which is valid in the diffusion 

boundary layer. 

Since U r = U o = 0 on the sphere, then near r = 1, qJ will have the approximate form 

t~ = b(O)(r- -  1) 2 + O ( ( r -  1) 3) (7) 

for some function b(O). To derive the diffusion boundary-layer equation, we put this expression 

for ~b into (2), make the transformation y = ( r - -  1)Pe u3 and take the terms which are largest 

as Pe ~ oo. Putting x = 7r -- 0 for convenience then gives, 

~C aC 
2 y B ( x )  ~x -- B ' (x )Y2  -Z-- 

oy 

a2C 
= sin x ay-- ~- (8) 

with boundary conditions 

aC 
ot o - - C  = 0 on y = O, ay 

C-+ 1 as y ---> oo 
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and symmetry condition 

aC 
- - =  0 o n  x = O, 
ax 

where B(x) = b (0 (x)), and Oto = Uo Pe- 2/3/k is a constant of order 1. 
Having found the surface concentration, Cs, from (8) the total rate of reaction on the 

sphere, Q, (non-dimensionalised with respect to rate 47rk) is given by 

1 
( CsdS, (9) 

Q = 4-~k 

where S is the sphere surface. 

3. Series solution 

Since U o = 0 at x = 0 then B(x)/x  ~ 0 as x -+ 0, and so B(x)  has the general form 

B(x)  = x2(bo + b=x 2 + b4x 4 + . . . ) ,  bo :# O. 

This suggests an expansion for the concentration C(x, y )  in the form 

(lO) 

C(x,y) = ~ C2i(y)x 2i. (11) 
i=0  

Substituting (10) and (11) into equation (8), together with the Taylor series for sin x, and 

equating coefficients of powers o fx  gives a set of ordinary differential equations for the C2i(Y). 
The equations and boundary conditions for Co, C2 and C4 are 

Cg + 2boy2C~ = O, 

H ~ I g..~tt AI.~ 2 [  "~t C2 + 2boy2C; --4boyC2 -~.o -- ' ,u2Y "~o, 

= "go2 -- ~4o2y t.2 + 4b2yC2 -- ~ Co -- 6b4y Co, 

i = 0 ,1 ,2 ,  

as y-+~ .  

C4 + 2boy2C4 -- 8boYC4 

~oC;i  (o)  - c ~ i ( o )  = o, 

Co -+ 1, C2i -+ O(i >1 1) 

Equation (12) is easily integrated to give 

(12) 

(13) 

(14) 

3Cto + (3/2bo)1/37(~ ;(2bo/3)y 3) 
Co(y) = 3ao + (3/2bo)'~3r(~) (15) 
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where 7(a, y)  = fg e-tt a- 1 dt is the incomplete gamma function. 

To solve (13) we first consider the associated homogeneous equation. Making the trans- 
formation t = 2boy 3/3 and putting C2 (t) = e-tv2 (t) gives 

" 2 i t v 2 + ( ~ - - t )  v2--~v2 = O. 

This is a particular case of Kummer's equation, the solutions of which are confluent hyper- 
geometric functions. In particular the solution we require is v2 (t) 4. z. = K2 U(~, 3, t), K2 constant, 
where U, defined by Slater [5], is not exponentially large at infinity. 

A particular integral of (13) is sought in the form AoyCo(y), Ao constant, and K2 is 
determined from the boundary condition at y = 0. The complete solution for 6"2 (y)  is, 

(I4 3 / C2(y) = e  -2b°v3/3 K2U ' 3 ' 2 b  + AoKoY , 

where 

Ao = (bo + 12b2)/30bo, 

Ko = 3/(3~o + (3/2bo)l/ar(])), 

K2 = 2aoAoKoGo/(18t~o(2bo/3) v3 + 3G~), 

Co = 

The equation for C4(y) is solved in a similar way to that for C2(y), a particular integral being 
sought in the form 

(D ly  + E1)p + ( F l y  + G)p' + (Hly  + Jly4)Co,  

where 

P = e -2b°val3 v2 (2boy 3/3) 

and D1 to J1 are constants. The solution is 

C4(y) = e -2%y3/3 K4U ; 3 '  

where 

E1 = (3b2--bo)/15bo,  

f 1 = 

H 1 = 

J =  

K 4 = 

2~Y3]  + Eap + Flyp '  + (HIY + J l y  4)Co, 

(bo + 12b2)/30bo, 

13/12600 + 8b2/(525bo) + 3b4/(7bo) -- 24b22/(175b~), 

--Ao(bo + 1262)/30, 

[2~oH1KoGo -- 18(E1 + F1)aoK2(2bo/3) va 

- 3E1K2G2ol/16t~o(2bo/3)l/3I'(]) + 9Go/21. 
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As an approximation (denoted by C*(x, y)), valid for small x, the series for C(x, y)  is truncated 

after the x 4 term. The corresponding approximation for Q is then 

fO ~" 
Q* = ½ C*(x, O) sin xdx. (16) 

For Stokes flow the non-dimensional stream function is known to be (2r 4 -- 3r  a + r) sin2x/4r 2 , 
and hence 

B(x) = 4 ~ sin2x. (17) 

In this case C*(x,  0) is 

C*(x, 0) : Co(0 ) --[- C2(0)x 2 --1- C4(0)x 4, 

where 

Co(0) = ao/(ao + 21/3I'(~)/3), 

C2(0) = - Co(0)/(10 + 60t~o/21/aG2o), 

(7]G~ -- 8r'(Z3)/9)(ao c2 (0)/5.21/3) - Co (0)/42o0 
c,(o) = 

(1 + 4ao r(])/(3.2 v3)) 

(18i) 

(lSii) 

(18iii) 

It can easily be seen from equations (18) above that C o ( 0 ) ~  1, C 2 ( 0 ) ~  0 and C4(0)-~ 0 as 

So ~ ~ ,  and that C2i(O) ~ 0, i = 0, 1, 2 as So -+ 0. This behaviour is consistent since ao ~ oo 
leads to the boundary condition bC/by = 0 on y = 0 (and consequently a solution of  the form 

C= 1 + O(otol)), and So ~ 0 leads to the boundary condition C =  0 o n y  = 0 (which has been 
solved by [1]). 

With So = 1, for example, and Stokes flow, 

C*(x, 0) = 0.47056 - 0.21228x 2 - 0.00086x 4, 

which is a decreasing function over the range 0 ~< x ~< 7r. 

C*(x, 0) for Stokes flow is compared to a numerical solution o f (8 )  in the next section. 

4. The numerical solution for Stokes flow 

WithB(x)  as given in (17), equation (8) becomes 

bC 2 OC 2 b2C (19) 
y s i n X ~ x x - - y  coSXby - 3 by 2" 
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This was solved numerically using a Crank-Nicholson scheme, accurate to order (k 2 , h 2) where 

k and h are the steplengths in the x- and y-directions respectively. A regularly spaced grid of  

points was used, xi = ik, i = 0 to M, yj  = ]h, / = 0 to N. The outer boundary condition was 

applied at YN =Nh. Equation (15) was used to obtain a set of  values at points i = 0 , / =  0, 

1 . . .  for the concentration profile at x = 0 and using this as initial data the Crank-Nicholson 

scheme steps forward in the x direction. Q was then found by numerical integration of  (9) 

using Simpson's rule. 

Although (19) was solved in the range 0 ~<x ~< rr it is really only applicable for ( r r - -x)  > 

O(Pe -1/3), and so values of  the surface concentration obtained for points very close to, or at 

x = rr should not be given too much credence. They are in fact very small and so any errors that 

they contain will produce only a small percentage error in Q (particularly since the integrand 

in (9) will contain a sin x term which is also small near x = ~r). The nature of  the solution near 

x = 7r is discussed in detail in the Appendix. 

The effects of  altering radial and angular stepsizes and the value of  N on the accuracy of  the 

numerical results for C s were investigated. Values o f h  = 0.05, k = rr/60 a n d N  = 60 were used, 

giving results accurate (except very close to the rear stagnation point) to three decimal places. 

Figure 1 shows C*(xl 0) and the numerical solution for C s at ao = 0.5, 1 and 2. For each 
value of  ao the two solutions are in good agreement up to x = rr/2, but diverge thereafter the 

difference at x = 5rr/6 for example, being 7 -8% of  the numerical value. Q and Q* (shown in 

0.7 

0 .6  

~ 0 . 5  

Cs 
0 . 4  

0 . 3  

0 . 2  

0 .1  

0 
0 

cx~= 2.0 

ct,= 1.0 

0.5 

I I 

6 3 

I L 
~_ __2= 5._.E~ 
2 3 6 

DC - - - - - ~  

Figure 1. Series approximation and numerical solution for the surface concentration, Cs, on a sphere in 
Stokes flow, for various values of  s o : . . . .  series approximation; numerical solution. 
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Table 1. Q and Q* for a sphere in 
Stokes flow for various a o . 

% Q Q* 

0.5 0.241 0.244 
1.0 0.392 0.397 
2.0 0.565 0.573 

Table 1) differ by less than 2% of  Q at each ao. Thus it can be seen that the approximation 

C*(x, 0) is adequate for the purposes of  obtaining a good estimate for the total rate of  surface 

reaction. 

5. The numerical solution for higher Reynolds numbers 

For higher Reynolds numbers B(x) was calculated at regular intervals of  x, using numerically 

determined values of  the vorticity (w) at the sphere surface, and the relationship 

oo(x, O) = 2B(x)/sinx. 

The surface vorticity was found by solving the full Navier-Stokes equations using an iterative 

numerical scheme which followed closely that of  Hamielec et al. [6]. The main difference 

between the scheme used and that in [6] was in the finite-difference expression used for the 

boundary condition on w at the sphere surface. The form of this expression is believed to be a 

critical factor in the convergence of  the scheme. The expression used was accurate to second 

order in the steplength in the radial direction and was derived using the method indicated by 

Ingham [7]. 

As well as B(x), the concentration profile at x = 0 is needed in order to use the Crank- 

Nicholson scheme. This is given by (15) if bo is known, and the latter can be calculated to a 

good approximation as shown below 

8(xi) 
(ik) 2 = bo+b l ( i k )+O(k4 ) ,  x i = ik, i = 1,2;  

1 
bo - 12k2 ( 1 6 B ( x l ) - - B ( x 2 ) )  + O(k4). 

Results were found for a range of  Reynolds numbers from 0.1 to 10, and these are shown in 

Figure 2. At Re = 0.1 the surface concentration is very close to that for Stokes flow, as would 

be expected. As the Reynolds number is increased C s is increased over the range x = 0 to 

x = 27r/3~ and is decreased for x > 2rr/3, with the result that the total rate of  surface reaction 

Q is increased (this is shown in Table 2). 

At Re = 10 there is some unusual behaviour of  C s near the rear stagnation probably due to 

the approach to separated flow in this region. 
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0.6  

0 .5  

0 .4  

t 
Cs 

0 .3  
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=10 
/Re =7 
.. Re= 5 

Re = 2 . 5 / - " ~ Z " ~ .  ~ 

Re =1. O /  

Re = 0 . 1 / ~  
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Re <<1,(Stokes f l o w )  

I 1 I I I l 
0 _r~ ~ rc 2r~__ 5"r~ r~ 

6 3 2 3 6 
3(: 

Figure 2. Surface concentration, Cs, on a sphere in flow at various Reynolds numbers, up to Re = 10, and 
with s0 = 1.0. 

6. The prolate and oblate spheroids in Stokes  f low 

The effect of the shape of the catalytic particle on the total surface reaction was investigated by 
considering a prolate and an oblate spheroid in Stokes flow. 

I fX  and Y are Cartesians, X being the direction of the free stream, then the case of a prolate 
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Table 2. Q at various 
Reynolds numbers (with 
% = 1.0). 

Re Q 

0.1 0.400 
0.5 0.404 
1.0 0.410 
2.5 0.421 
5.0 0.431 
7.0 0.435 
8.0 0.437 
9.0 0.439 

10.0 0.441 

spheroid can be dealt with by making the transformation X + iY =/3 cosh (~ + it/), where/3 is 

a constant. The curve ~ = Go is an ellipse in the X-Y plane, given parametrically by 

X = a cos ~, 

Y = b sin ~, 

a = # cosh G0[ 

b ~ sinh Go) 

0 ~ 2 ~ .  

Rotation of  this curve about the X axis generates a prolate spheroid. 

The convective diffusion equation is written in terms of  the coordinates ~, ~, 77 (¢ being 

azimuthal angle), and is non-dimensionalised, this time using a length scale of/~ cosh G0. This 

means that the non-dimensional figure is contained within a sphere of  unit radius, and as 

Go ~ oo (i.e. a ~ b) the particle tends to a unit sphere. The velocity components are written in 

terms of  a stream function which has near ~ = Go, the approximate form 

= b ( n ) ( ~ -  ~o) ~ + 0 ( ( ~  - ~o)~). (20) 

Using (20), making the transformations x = lr--77 and ~'= ( ~ -  ~o)Pe u3 (where now Pe = 

Uofl cosh GolD) and taking the largest terms as Pe ~ co gives the diffusion boundary-layer 

equation in elliptic coordinates 

a_s_c a2c  
2B(x)  ~--~--- B'(x) ~-2 = tanh Go sin x (21) 

ox ax a~ "2 ' 

a c  
c o t h ~ o - ~ - - C  = O, o n g =  O, 

o~  

a c  
c ~  1 as ~ ~ ,  - -  = 0 

ax 
on x = 0, 

B ( x )  = b(n(x)) .  
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Payne and Pell [8] give an expression for qJ for a prolate spheroid; their expression appears to 

be in error, but using a corrected version we find 

Bo sin2x, (22) 
B(x)  - cosh2~ ° 

where 

- - S  O 

Bo = In Is° + l~ So cosh ~o. 

-½( g + 1) - 1] 

So (21) becomes 

sin x ~- 3C ~2 OC sinh Go cosh ~o O2C 
- -  --  cos x --= = (23) 
3x 3~ 2Bo O~ 2 " 

This is the same as equation (19) for a sphere except for the coefficient on the right-hand side. 

As expected (since the shape of  the particle tends to a unit sphere as ~o ~ co) this coefficient 

tends to 2/3 as ~o -+ oo. 
The oblate spheroid is given by the transformation X + iY  =/3 sinh (~ + it/). The curve ~ = 

Go is now an ellipse similar to that which generates the prolate spheroid, but rotated through 

90 ° . In this case the boundary-layer diffusion equation (derived in exactly the same way as for 

(23)) is 

- OC OC cosh2~o 32C 
sin x ~ 3xx cos x ~2 0ff - 2Bo 3~ 2 , (24) 

0C 
a o - ~ - - C =  0 on g = O, 

O~ 

TO 
Bo = ' ro = sinhGo. 

To + (1 - - r  2) co t - l ( ro )  

Equations (23) and (24) were solved numerically, using a Crank-Nicholson scheme, for a range 

of  values of  Go to give in each case the surface concentration Cs, and hence the total rate of  

reaction (this time non-dimensionalised with respect to the rate Sak,  where S a is the surface 

area of  the particle in question). 

In order to obtain results of  a similar accuracy to those in the case of  a sphere in Stokes 

flow, the step lengths were taken to be k = n/60 and h = 0.05. N = 60 was used for the prolate 

spheroid at all values of  ~o- For the oblate spheroid N = 60 was a suitable value except where 

Go was small - at ~o = 0.05, for example, N = 200 was needed to obtain the required accuracy. 
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0 . 9  
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0 . 7  

0 . 6  

0 . 5  

Figure 3. 

s o = 1.0, Re .~ 1: . . . .  prolate spheroid; 

 o.os 

\ 

~ . . . . . . ~ O .  25  

\ " " ' - - - . . .  ~.0. 5 \ 
X 

o 4 t- ,, i I 

O. 0 "~ 
0.1 - O ~  

0 I I I 1 I 
0 ~ ~ ~ 2~ 5._~ 

6 3 2 3 6 
9C - ~ , -  

Surface concentrat ion,  Cs, for the  prolate and oblate spheroids at various values o f  eo, and with 

oblate spheroid. 

The results for C s are shown in Figure 3. At any value of Go the solution for the prolate 
spheroid lies above that for the sphere which in turn lies above that for the oblate spheroid. As 
Go is increased the two solutions for the two types of spheroid approach each other and, as is 
expected, converge on the solution for a sphere. A corresponding trend is seen in the values of Q 
shown in Table 3. 

A p p e n d i x :  T h e  s o l u t i o n  n e a r  x = rr 

To examine the behaviour of the solution of (8) nearx = Ir we work in terms of 0(0 = n --x). 
Since b(O)=DoO 2 near 0 = 0 (for some constant Do) then equation (8)gives, on retaining 
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Table 3. Q for the prolate and oblate spheroids for 
various values of ~0 and with % = 1.0, Re < 1. 

~o Q 

Prolate Oblate 

0.05 0.957 0.174 
0.1 0.905 0.211 
0.25 0.764 0.269 
0.5 0.607 0.318 
0.75 0.517 0.347 
1.0 0.466 0.364 
2.0 0.401 0.388 
3.0 0.393 0.391 
5.0 0.391 0.391 
o o  

0.391 0.391 (sphere) 

only leading terms, 

32C 3C + 3C 
3y 2 -- 2Doy 2 ~y 2DoyO ~ = O. (25) 

C(O, y )  is now expanded in the form 

C(O,y) = Ore(go(y) + . . . ) ,  

where m is a constant,  as yet  unknown. The equation for go(Y) is 

" 2 P 
go -- 2Doy  go + 2mDoygo = 0 

which has the solution (which is not  exponential ly large at infinity) 

go = Ao ' 3 '  

(26) 

(27) 

(28) 

for some constant A o. 

The boundary condit ion on y = 0 gives Ctogo(O ) =go(O),  so that from Slater [5] we find 
that 

, 
o g  3 r ( -  1/3) 

Equation (29) determines the value of  m for a given value of  So, if Do is known. For Stokes 

flow (i.e. Do = 3/4) (29) was solved numerically by evaluating the left-hand side as a function of  
m, at various O~o. Graphs of  the log of  the numerical solution for C 8 (for Re .~ 1) against log (0), 

for small 0, at various CZo were found to be straight lines - thus confirming that C,(O) behaves 
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Table 4. Values of m, at various ao, for the 
solution at the rear stagnation point. 

~o m 

(i) (ii) 

0.25 0.80 0.81157 
0.5 0.66 0.67666 
0.75 0.57 0.57769 
1.0 0.50 0.50285 
1.25 0.44 0.44462 
1.5 0.39 0.39817 
1.75 0.35 0.36034 
2.0 0.32 0.32898 

(i) Values obtained graphically 
(ii) Values obtained from equation (29) 

like 0 'n near the rear stagnation point. The values o f m  obtained from these graphs (m being the 

gradient) agreed fairly closely with those obtained from (29). Some results are shown in Table 4. 

Ao is indeterminate, but since the above is an asymptotic expansion of a parabolic equation 
as described by Stewartson [9] we do expect some indeterminancy in the solution. 

The form for go(Y) given above does not satisfy the outer boundary condition, and so (26) 

must be regarded as an inner solution holding for y = O(1). The asymptotic form of go as 

y ~ ~, gives 

C ..~ (~--~ra/aAoymOm (1 
\ 

re(m-- 1) +re(m-- 1)(m --  3)(m --  4) | 

6DoY 3 72D~y 6 + . . . .  / (30) 

This suggests we put /a  = yO to obtain a solution which will hold when y = O(0 -l  ). Equation 

(25) then becomes 

0C 02 a2C + 2D0/a = 0. (31) 8/a---T ~ -  

Expanding C in the form C = Co (P) + 03 C I  0 2 )  "{- • - .  , we find that C1 = - C~/(6DoP) and (as 
expected) Co (p) is indeterminate. 

However we know from (30) that 

Co (p) ~ A ola ~ as p ~ O .  

Also, as a check, the term of  order 0 a in the outer expansion agrees to leading order, as/a ~ 0, 
with the 0(03 ) term in (30). 

This form of  the solution of  (8) near p = 0 as inner and outer expansions matches onto the 
form of  the solution of  the full convective diffusion equation near 0 = 0 as described by [1]. 
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Since the surface concentration is o(om), and m > O, near 0 = 0 then (as asserted earlier) the 
contribution to the total surface reaction from this region is small. For the prolate and oblate 
spheroids the analysis of the boundary-layer diffusion equation near the r.s.p, is essentially that 
given above, leading to the same conclusion. 
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